DEG1 (Differential Equations Group Of North-East) is an Italian mathematical platform with the aim of gathering the contributions of researchers, former members and collaborators of the differential equations research groups of the academic institutions in Friuli-Venezia Giulia: University of Trieste, University of Udine and SISSA.
DEG1 is based on the sharing of news, ideas, projects and other academic stuff. Below you can find a collection of recent papers and preprints of the group members, along with their research activities and projects. Some scientific events of interest for the group are also posted.


DEG1 Followers – You can join the mailing list by writing us a message (go the section Contacts).


DEG1 events

The group organises periodic meetings. The list of past events is available at the page:
past DEG1 events

Twice a month webinars are held in order to keep the group up-to-date with the latest research products of its members:
DEG1 Webinars

Events of interest

[workshop, school] Brescia Winter School on Reaction Diffusion PDE’s and Optimization
Brescia, 13-15 Jan 2020

[school] Mathematical Modelling of Ecological and Socioeconomic Systems
Senegal, 27-31 Jan 2020

[workshop] Nonlinear Meeting in Milan 2020
Milano, 30-31 Jan 2020

[school] I-CELMECH Training School
Milano, 3-7 Feb 2020

[workshop] 11th Conference DSABNS
Trento, 4-7 Feb 2020

[workshop] The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications
Atlanta (US), 5-9 Jun 2020

[workshop] XX CEDYA Conferencia de ecuciones diferenciales y aplicaciones
Gijón (Spain), 15-19 Jun 2020

[workshop] 8th European Congress of Mathematics
Portorož (Slovenia), 5-11 July 2020

[school] Modern Aspects of Dynamical Systems (CIME course)
Cetraro (CS), 20-24 July 2020

[workshop] Differential Equations and Applications
Brno (Czech Republic), 7-10 Sept 2020

[workshop] INdAM Workshop “Nonlinear Phenomena: between ODEs and PDEs”
Roma, 14‑18 Sept 2020

[workshop] DSDFE 2020 – Dynamical Systems, Difference and Functional Equations
Krynica‑Zdrój (Poland), 13‑18 Sept 2020

[workshop] Geometric and Variational Methods in Celestial Mechanics
Oaxaca (Mexico), 4-9 Oct 2020

[workshop] DS21 – SIAM Conference on Applications of Dynamical Systems
Portland (US), 23-27 May 2021

[conference] ICM 2022 – International Congress of Mathematicians
Saint Petersburg (Russia), 6-14 July 2022



  • W. Ao, A. Jevnikar, W. Yang, Wave equations associated to Liouville-type problems: global existence in time and blow up criteria. pdf-162.png
  • W. Ao, A. Jevnikar, W. Yang, Blow up solutions for Sinh-Gordon equation with residual mass. pdf-162.png
  • D. Bartolucci, A. Jevnikar, On the global bifurcation diagram of the Gel’fand problem. pdf-162.png
  • V. Barutello, A. Boscaggin, W. Dambrosio, On the minimality of Keplerian arcs with fixed negative energy. pdf-162.png
  • A. Boscaggin, F. Colasuonno, B. Noris, Multiplicity of solutions for the Minkowski-curvature equation via shooting method. pdf-162.png
  • A. Boscaggin, W. Dambrosio, G. Feltrin, S. Terracini, Parabolic arcs for time-dependent perturbations of the Kepler problem. pdf-162.png
  • A. Boscaggin, G. Feltrin, Positive periodic solutions to an indefinite Minkowski-curvature equation. pdf-162.png
  • A. Boscaggin, G. Feltrin, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight. pdf-162.png
  • A. Boscaggin, G. Feltrin, E. Sovrano, High multiplicity and chaos for an indefinite problem arising from genetic models. pdf-162.png
  • T. Dondè, F. Zanolin, Multiple periodic solutions for a Duffing type equation with one-sided sublinear nonlinearity: Beyond the Poincaré-Birkhoff twist theorem. pdf-162.png
  • G. Feltrin, P. Gidoni, Multiplicity of clines for systems of indefinite differential equations arising from a multilocus population genetics model. pdf-162.png
  • A. Fonda, A logarithmic spiral in the complex plane interpolating between the exponential and the circular functions. pdf-162.png
  • A. Fonda, P. Gidoni, Coupling linearity and twist: an extension of the Poincaré–Birkhoff Theorem for Hamiltonian systems. pdf-162.png
  • A. Fonda, G. Klun, A. Sfecci, Periodic solutions of nearly integrable Hamiltonian systems bifurcating from infinite-dimensional tori. pdf-162.png
  • A. Fonda, J. Mawhin, M. Willem, Multiple periodic solutions of infinite-dimensional pendulum-like equations. pdf-162.png
  • A. Fonda, R. Toader, Subharmonic solutions of weakly coupled Hamiltonian systems. pdf-162.png
  • M. Garrione, Vanishing diffusion limits for planar fronts in bistable models with saturation. pdf-162.png
  • A. Jevnikar, A. Malchiodi, R. Wu, Existence results for a super-Liouville equation on compact surfaces. pdf-162.png
  • R. Musina, F. Zuddas, Multiple closed K-magnetic geodesics on S2. pdf-162.png
  • A. Sfecci, Double resonance in Sturm-Liouville planar boundary value problems. pdf-162.png
  • E. Sovrano, F. Zanolin, The Ambrosetti-Prodi periodic problem: different routes to complex dynamics. pdf-162.png

Publications 2020

  • A. Boscaggin, F. Colasuonno, B. Noris, A priori bounds and multiplicity of positive solutions for p-Laplacian Neumann problems with sub-critical growth, Proc. Roy. Soc. Edinburgh Sect. A (in press) link-16.png pdf-162.png
  • A. Boscaggin, F. Colasuonno, B. Noris, Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions, Discrete Contin. Dyn. Syst. Ser. S link-16.png pdf-162.png
  • A. Boscaggin, W. Dambrosio, D. Papini, Periodic solutions to a forced Kepler problem in the plane. Proc. Amer. Math. Soc. link-16.png pdf-162.png
  • J. Chu, M. Garrione, F. Gazzola, Stability analysis in some strongly prestressed rectangular plates, Evol. Equ. Control Theory link-16.pngpdf-162.png
  • A. Boscaggin, A. Fonda, M. Garrione, An infinite-dimensional version of the Poincaré-Birkhoff theorem on the Hilbert cube, Annali della Scuola Normale di Pisa (in press) pdf-162.png
  • G. Dal Maso, C.J. Larsen, R. Toader, Elastodynamic Griffith fracture on prescribed crack paths with kinks, NoDEA Nonlinear Differential Equations Appl. link-16.png
  • T. Dondè, F. Zanolin, Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach, Topol. Methods Nonlinear Anal. (in press) pdf-162.png
  • R. Folino, M. Garrione, M. Strani, Stability properties and dynamics of solutions to viscous conservation laws with mean curvature operator, J. Evolution Equations (in press) link-16.png pdf-162.png
  • M. Garrione, F. Gazzola, Linear theory for beams with intermediate piers, Commun. Contemp. Math. (in press) link-16.pngpdf-162.png
  • G. Klun, On functions having coincident p-norms, Ann. Mat. Pura Appl. (in press) link-16.png

Publications 2019

  • F. Alessio, P. Montecchiari, A. Sfecci, Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations, Netw. Heterog. Media. link-16.png
  • S. Arlot, S. Marmi, D. Papini, Coupling the Yoccoz-Birkeland population model with price dynamics: chaotic livestock commodities market cycles, Nonlinearity link-16.pngpdf-162.png
  • D. Bartolucci, C. Gui, A. Jevnikar, A. Moradifam, A singular sphere covering inequality: uniqueness and symmetry of solutions to singular Liouville-type equations. Math. Ann. link-16.png
  • D. Bartolucci, A. Jevnikar, Y. Lee, W. Yang, Local uniqueness of m-bubbling sequences for the Gelʹfand equation. Comm. Partial Differential Equations link-16.png
  • D. Bartolucci, A. Jevnikar, Y. Lee, W. Yang, Uniqueness of bubbling solutions of mean field equations. J. Math. Pures Appl. link-16.png
  • D. Bartolucci, A. Jevnikar, C.-S. Lin, Non-degeneracy and uniqueness of solutions to singular mean field equations on bounded domains. J. Differential Equations link-16.png
  • A. Boscaggin, M. Garrione, A counterexample to a priori bounds under the Ahmad-Lazer-Paul condition, Rend. Istit. Mat. Univ. Trieste pdf-162.png
  • A. Boscaggin, M. Garrione, Pairs of nodal solutions for a Minkowski-curvature boundary value problem in a ball. Commun. Contemp. Math. link-16.pngpdf-162.png
  • A. Boscaggin, R. Ortega, L. Zhao, Periodic solutions and regularization of a Kepler problem with time-dependent perturbation. Trans. Amer. Math. Soc. link-16.pngpdf-162.png
  • C. Corsato, C. De Coster, N. Flora, P. Omari, Radial solutions of the Dirichlet problem for a class of quasilinear elliptic equations arising in optometry, Nonlinear Anal. link-16.png pdf-162.png
  • C. Corsato, R. Pelessoni, P. Vicig, Nearly-Linear uncertainty measures, Internat. J. Approx. Reason. link-16.pngpdf-162.png
  • F. Dalbono, M. Franca, A. Sfecci, Multiplicity of ground states for the scalar curvature equation, Ann. Mat. Pura Appl. link-16.png pdf-162.png
  • G. Dal Maso, C.J. Larsen, R. Toader, Existence for elastodynamic Griffith fracture with a weak maximal dissipation condition, J. Math. Pures Appl. link-16.png
  • G. Dal Maso, R. Toader, On the Cauchy problem for the wave equation on time-dependent domains, J. Differential Equationslink-16.png
  • T. Dondè, Uniform persistence in a prey–predator model with a diseased predator, J. Math. Biol. link-16.png pdf-162.png
  • G. Feltrin, E. Sovrano, F. Zanolin, Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator, NoDEA Nonlinear Differential Equations pdf-162.png
  • A. Fonda, Generalizing the Lusternik-Schnirelmann critical point theorem. Bull. Lond. Math. Soc. link-16.png pdf-162.png
  • A. Fonda, A generalization of the parallelogram law to higher dimensions, Ars Math. Contemp. pdf-162.png
  • A. Fonda, R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth. Adv. Nonlinear Anal. pdf-162.png
  • A. Fonda, A. J. Ureña, A Poincaré-Birkhoff theorem for Hamiltonian flows on nonconvex domains. J. Math. Pures Appl. pdf-162.png
  • A. Fonda, G. Klun, On the topological degree of planar maps avoiding normal cones. Topol. Methods Nonlinear Anal. pdf-162.png
  • A. C. Gallo, Periodic solutions of perturbed central Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl. link-16.png pdf-162.png
  • M. Garrione, A. Margheri, C. Rebelo, Nonautonomous nonlinear ODEs: Nonresonance conditions and rotation numbers, J. Math. Anal. Appl. link-16.png pdf-162.png
  • M. Garrione, F. Gazzola, Nonlinear Equations for Beams and Degenerate Plates with Piers, SpringerBriefs in Applied Sciences and Technology link-16.pngpdf-162.png
  • M. Garrione, M. Strani, Heteroclinic traveling fronts for a generalized Fisher-Burgers equation with saturating diffusion, Indiana Univ. Math. J. link-16.pngpdf-162.png
  • M. Garrione, M. Strani, Monotone wave fronts for (p,q)-Laplacian driven reaction-diffusion equations, Discrete Contin. Dyn. Syst. Ser. S link-16.pngpdf-162.png
  • P. Gidoni, G.B. Maggiani, R. Scala, Existence and regularity of solutions for an evolution model of perfectly plastic plates, Commun. Pure Appl. Anal. link-16.png pdf-162.png
  • P. Gidoni, A. Margheri, Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems, Discrete Contin. Dyn. Syst. link-16.png pdf-162.png
  • A. Jevnikar, W. Yang, A mean field equation involving positively supported probability measures: blow-up phenomena and variational aspects. Proc. Roy. Soc. Edinburgh Sect. A link-16.png
  • J. López-Gómez, P. Omari, Global components of positive bounded variation solutions of a one-dimensional indefinite quasilinear Neumann problem, Adv. Nonlinear Stud. link-16.png
  • J. Mawhin, G. Villari, F. Zanolin, Existence and non-existence of limit cycles for Liénard prescribed curvature equations, Nonlinear
  • R. Musina, A.I. Nazarov, A note on truncations in fractional Sobolev spaces. Bull. Math. Sci. link-16.pngpdf-162.png
  • R. Musina, A.I. Nazarov, Fractional Hardy–Sobolev inequalities on half spaces, Nonlinear Anal. link-16.pngpdf-162.png
  • R. Musina, A.I. Nazarov, Strong maximum principles for fractional Laplacians. Proc. Roy. Soc. Edinburgh Sect. A link-16.pngpdf-162.png
  • R. Musina, F. Zuddas, Embedded loops in the hyperbolic plane with prescribed, almost constant curvature. Ann. Global Anal. Geom. link-16.pngpdf-162.png
  • D. Papini, G. Villari, F. Zanolin, Chaotic dynamics in a periodically perturbed Liénard system, Diff. Int. Equ. link-16.png
  • A. Sfecci, On the structure of radial solutions for some quasilinear elliptic equations, J. Math. Anal. Appl. link-16.png pdf-162.png
  • A. Tellini, Comparison among several planar fisher-KPP road-field systems, in Contemporary Research in Elliptic PDEs and Related Topics,
    Springer INDAM Series link-16.png

Past publications

You can find a list here.

Continue reading “Papers”


Progetti di Ricerca GNAMPA 2019

  • Il modello di Born-Infeld per l’elettromagnetismo nonlineare: esistenza, regolarità e molteplicità di soluzioni
    P.I.: Francesca Colasuonno. Participants: Alberto Boscaggin, Maurizio Garrione, Benedetta Noris, Alessandro Iacopetti

Past projects

You can find a list here.