DEG1 (Differential Equations Group Of North-East) is an Italian mathematical platform with the aim of gathering the contributions of researchers, former members and collaborators of the differential equations research groups of the academic institutions in Friuli-Venezia Giulia: University of Trieste, University of Udine and SISSA.
DEG1 is based on the sharing of news, ideas, projects and other academic stuff. Below you can find a collection of recent papers and preprints of the group members, along with their research activities and projects. Some scientific events of interest for the group are also posted.

Members

DEG1 Followers – You can join the mailing list by writing us a message (go the section Contacts).

Events

DEG1 events

The group organises periodic meetings. The list of past events is available at the page:
past DEG1 events

Twice a month webinars are held in order to keep the group up-to-date with the latest research products of its members:
DEG1 Webinars


Events of interest

[workshop, school] Brescia Winter School on Reaction Diffusion PDE’s and Optimization
Brescia, 13-15 Jan 2020

[school] Mathematical Modelling of Ecological and Socioeconomic Systems
Senegal, 27-31 Jan 2020

[workshop] Nonlinear Meeting in Milan 2020
Milano, 30-31 Jan 2020

[school] I-CELMECH Training School
Milano, 3-7 Feb 2020

[workshop] 11th Conference DSABNS
Trento, 4-7 Feb 2020

[workshop] The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications
Atlanta (US), 5-9 Jun 2020

[workshop] XX CEDYA Conferencia de ecuciones diferenciales y aplicaciones
Gijón (Spain), 15-19 Jun 2020

[workshop] 8th European Congress of Mathematics
Portorož (Slovenia), 5-11 July 2020

[school] Modern Aspects of Dynamical Systems (CIME course)
Cetraro (CS), 20-24 July 2020

[workshop] Differential Equations and Applications
Brno (Czech Republic), 7-10 Sept 2020

[workshop] INdAM Workshop “Nonlinear Phenomena: between ODEs and PDEs”
Roma, 14‑18 Sept 2020

[workshop] DSDFE 2020 – Dynamical Systems, Difference and Functional Equations
Krynica‑Zdrój (Poland), 13‑18 Sept 2020

[workshop] Geometric and Variational Methods in Celestial Mechanics
Oaxaca (Mexico), 4-9 Oct 2020

[workshop] DS21 – SIAM Conference on Applications of Dynamical Systems
Portland (US), 23-27 May 2021

[conference] ICM 2022 – International Congress of Mathematicians
Saint Petersburg (Russia), 6-14 July 2022


Papers

Preprints

  • W. Ao, A. Jevnikar, W. Yang, Wave equations associated to Liouville-type problems: global existence in time and blow up criteria. pdf-162.png
  • W. Ao, A. Jevnikar, W. Yang, Blow up solutions for Sinh-Gordon equation with residual mass. pdf-162.png
  • D. Bartolucci, A. Jevnikar, On the global bifurcation diagram of the Gel’fand problem. pdf-162.png
  • V. Barutello, A. Boscaggin, W. Dambrosio, On the minimality of Keplerian arcs with fixed negative energy. pdf-162.png
  • A. Boscaggin, F. Colasuonno, B. Noris, Multiplicity of solutions for the Minkowski-curvature equation via shooting method. pdf-162.png
  • A. Boscaggin, W. Dambrosio, G. Feltrin, S. Terracini, Parabolic arcs for time-dependent perturbations of the Kepler problem. pdf-162.png
  • A. Boscaggin, G. Feltrin, Positive periodic solutions to an indefinite Minkowski-curvature equation. pdf-162.png
  • A. Boscaggin, G. Feltrin, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight. pdf-162.png
  • A. Boscaggin, G. Feltrin, E. Sovrano, High multiplicity and chaos for an indefinite problem arising from genetic models. pdf-162.png
  • T. Dondè, F. Zanolin, Multiple periodic solutions for a Duffing type equation with one-sided sublinear nonlinearity: Beyond the Poincaré-Birkhoff twist theorem. pdf-162.png
  • G. Feltrin, P. Gidoni, Multiplicity of clines for systems of indefinite differential equations arising from a multilocus population genetics model. pdf-162.png
  • A. Fonda, A logarithmic spiral in the complex plane interpolating between the exponential and the circular functions. pdf-162.png
  • A. Fonda, P. Gidoni, Coupling linearity and twist: an extension of the Poincaré–Birkhoff Theorem for Hamiltonian systems. pdf-162.png
  • A. Fonda, G. Klun, A. Sfecci, Periodic solutions of nearly integrable Hamiltonian systems bifurcating from infinite-dimensional tori. pdf-162.png
  • A. Fonda, J. Mawhin, M. Willem, Multiple periodic solutions of infinite-dimensional pendulum-like equations. pdf-162.png
  • A. Fonda, R. Toader, Subharmonic solutions of weakly coupled Hamiltonian systems. pdf-162.png
  • M. Garrione, Vanishing diffusion limits for planar fronts in bistable models with saturation. pdf-162.png
  • A. Jevnikar, A. Malchiodi, R. Wu, Existence results for a super-Liouville equation on compact surfaces. pdf-162.png
  • R. Musina, F. Zuddas, Multiple closed K-magnetic geodesics on S2. pdf-162.png
  • A. Sfecci, Double resonance in Sturm-Liouville planar boundary value problems. pdf-162.png
  • E. Sovrano, F. Zanolin, The Ambrosetti-Prodi periodic problem: different routes to complex dynamics. pdf-162.png

Publications 2020

  • A. Boscaggin, F. Colasuonno, B. Noris, A priori bounds and multiplicity of positive solutions for p-Laplacian Neumann problems with sub-critical growth, Proc. Roy. Soc. Edinburgh Sect. A (in press) link-16.png pdf-162.png
  • A. Boscaggin, F. Colasuonno, B. Noris, Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions, Discrete Contin. Dyn. Syst. Ser. S link-16.png pdf-162.png
  • A. Boscaggin, W. Dambrosio, D. Papini, Periodic solutions to a forced Kepler problem in the plane. Proc. Amer. Math. Soc. link-16.png pdf-162.png
  • J. Chu, M. Garrione, F. Gazzola, Stability analysis in some strongly prestressed rectangular plates, Evol. Equ. Control Theory link-16.pngpdf-162.png
  • A. Boscaggin, A. Fonda, M. Garrione, An infinite-dimensional version of the Poincaré-Birkhoff theorem on the Hilbert cube, Annali della Scuola Normale di Pisa (in press) pdf-162.png
  • G. Dal Maso, C.J. Larsen, R. Toader, Elastodynamic Griffith fracture on prescribed crack paths with kinks, NoDEA Nonlinear Differential Equations Appl. link-16.png
  • T. Dondè, F. Zanolin, Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach, Topol. Methods Nonlinear Anal. (in press) pdf-162.png
  • R. Folino, M. Garrione, M. Strani, Stability properties and dynamics of solutions to viscous conservation laws with mean curvature operator, J. Evolution Equations (in press) link-16.png pdf-162.png
  • M. Garrione, F. Gazzola, Linear theory for beams with intermediate piers, Commun. Contemp. Math. (in press) link-16.pngpdf-162.png
  • G. Klun, On functions having coincident p-norms, Ann. Mat. Pura Appl. (in press) link-16.png

Publications 2019

  • F. Alessio, P. Montecchiari, A. Sfecci, Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations, Netw. Heterog. Media. link-16.png
  • S. Arlot, S. Marmi, D. Papini, Coupling the Yoccoz-Birkeland population model with price dynamics: chaotic livestock commodities market cycles, Nonlinearity link-16.pngpdf-162.png
  • D. Bartolucci, C. Gui, A. Jevnikar, A. Moradifam, A singular sphere covering inequality: uniqueness and symmetry of solutions to singular Liouville-type equations. Math. Ann. link-16.png
  • D. Bartolucci, A. Jevnikar, Y. Lee, W. Yang, Local uniqueness of m-bubbling sequences for the Gelʹfand equation. Comm. Partial Differential Equations link-16.png
  • D. Bartolucci, A. Jevnikar, Y. Lee, W. Yang, Uniqueness of bubbling solutions of mean field equations. J. Math. Pures Appl. link-16.png
  • D. Bartolucci, A. Jevnikar, C.-S. Lin, Non-degeneracy and uniqueness of solutions to singular mean field equations on bounded domains. J. Differential Equations link-16.png
  • A. Boscaggin, M. Garrione, A counterexample to a priori bounds under the Ahmad-Lazer-Paul condition, Rend. Istit. Mat. Univ. Trieste pdf-162.png
  • A. Boscaggin, M. Garrione, Pairs of nodal solutions for a Minkowski-curvature boundary value problem in a ball. Commun. Contemp. Math. link-16.pngpdf-162.png
  • A. Boscaggin, R. Ortega, L. Zhao, Periodic solutions and regularization of a Kepler problem with time-dependent perturbation. Trans. Amer. Math. Soc. link-16.pngpdf-162.png
  • C. Corsato, C. De Coster, N. Flora, P. Omari, Radial solutions of the Dirichlet problem for a class of quasilinear elliptic equations arising in optometry, Nonlinear Anal. link-16.png pdf-162.png
  • C. Corsato, R. Pelessoni, P. Vicig, Nearly-Linear uncertainty measures, Internat. J. Approx. Reason. link-16.pngpdf-162.png
  • F. Dalbono, M. Franca, A. Sfecci, Multiplicity of ground states for the scalar curvature equation, Ann. Mat. Pura Appl. link-16.png pdf-162.png
  • G. Dal Maso, C.J. Larsen, R. Toader, Existence for elastodynamic Griffith fracture with a weak maximal dissipation condition, J. Math. Pures Appl. link-16.png
  • G. Dal Maso, R. Toader, On the Cauchy problem for the wave equation on time-dependent domains, J. Differential Equationslink-16.png
  • T. Dondè, Uniform persistence in a prey–predator model with a diseased predator, J. Math. Biol. link-16.png pdf-162.png
  • G. Feltrin, E. Sovrano, F. Zanolin, Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator, NoDEA Nonlinear Differential Equations Appl.link-16.png pdf-162.png
  • A. Fonda, Generalizing the Lusternik-Schnirelmann critical point theorem. Bull. Lond. Math. Soc. link-16.png pdf-162.png
  • A. Fonda, A generalization of the parallelogram law to higher dimensions, Ars Math. Contemp. pdf-162.png
  • A. Fonda, R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth. Adv. Nonlinear Anal. pdf-162.png
  • A. Fonda, A. J. Ureña, A Poincaré-Birkhoff theorem for Hamiltonian flows on nonconvex domains. J. Math. Pures Appl. pdf-162.png
  • A. Fonda, G. Klun, On the topological degree of planar maps avoiding normal cones. Topol. Methods Nonlinear Anal. pdf-162.png
  • A. C. Gallo, Periodic solutions of perturbed central Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl. link-16.png pdf-162.png
  • M. Garrione, A. Margheri, C. Rebelo, Nonautonomous nonlinear ODEs: Nonresonance conditions and rotation numbers, J. Math. Anal. Appl. link-16.png pdf-162.png
  • M. Garrione, F. Gazzola, Nonlinear Equations for Beams and Degenerate Plates with Piers, SpringerBriefs in Applied Sciences and Technology link-16.pngpdf-162.png
  • M. Garrione, M. Strani, Heteroclinic traveling fronts for a generalized Fisher-Burgers equation with saturating diffusion, Indiana Univ. Math. J. link-16.pngpdf-162.png
  • M. Garrione, M. Strani, Monotone wave fronts for (p,q)-Laplacian driven reaction-diffusion equations, Discrete Contin. Dyn. Syst. Ser. S link-16.pngpdf-162.png
  • P. Gidoni, G.B. Maggiani, R. Scala, Existence and regularity of solutions for an evolution model of perfectly plastic plates, Commun. Pure Appl. Anal. link-16.png pdf-162.png
  • P. Gidoni, A. Margheri, Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems, Discrete Contin. Dyn. Syst. link-16.png pdf-162.png
  • A. Jevnikar, W. Yang, A mean field equation involving positively supported probability measures: blow-up phenomena and variational aspects. Proc. Roy. Soc. Edinburgh Sect. A link-16.png
  • J. López-Gómez, P. Omari, Global components of positive bounded variation solutions of a one-dimensional indefinite quasilinear Neumann problem, Adv. Nonlinear Stud. link-16.png
  • J. Mawhin, G. Villari, F. Zanolin, Existence and non-existence of limit cycles for Liénard prescribed curvature equations, Nonlinear Anal.link-16.pngpdf-162.png
  • R. Musina, A.I. Nazarov, A note on truncations in fractional Sobolev spaces. Bull. Math. Sci. link-16.pngpdf-162.png
  • R. Musina, A.I. Nazarov, Fractional Hardy–Sobolev inequalities on half spaces, Nonlinear Anal. link-16.pngpdf-162.png
  • R. Musina, A.I. Nazarov, Strong maximum principles for fractional Laplacians. Proc. Roy. Soc. Edinburgh Sect. A link-16.pngpdf-162.png
  • R. Musina, F. Zuddas, Embedded loops in the hyperbolic plane with prescribed, almost constant curvature. Ann. Global Anal. Geom. link-16.pngpdf-162.png
  • D. Papini, G. Villari, F. Zanolin, Chaotic dynamics in a periodically perturbed Liénard system, Diff. Int. Equ. link-16.png
  • A. Sfecci, On the structure of radial solutions for some quasilinear elliptic equations, J. Math. Anal. Appl. link-16.png pdf-162.png
  • A. Tellini, Comparison among several planar fisher-KPP road-field systems, in Contemporary Research in Elliptic PDEs and Related Topics,
    Springer INDAM Series link-16.png


Past publications

You can find a list here.

 
Continue reading “Papers”

Projects

Progetti di Ricerca GNAMPA 2019

  • Il modello di Born-Infeld per l’elettromagnetismo nonlineare: esistenza, regolarità e molteplicità di soluzioni
    P.I.: Francesca Colasuonno. Participants: Alberto Boscaggin, Maurizio Garrione, Benedetta Noris, Alessandro Iacopetti

Past projects

You can find a list here.

Contacts